

Improving Cold Spray Additive Manufacturing with a Nozzle Designed by the Method of Characteristics

Florentina-Luiza Zavalan*, Aldo Rona

University of Leicester, Leicester, United Kingdom *flz1@leicester.ac.uk

23rd February, 2021

4th Postgraduate Research Symposium on Ferrous Metallurgy

- Introduction to Cold Spray Process
- Statement of Problem
- Computational Methodology & Model Validation
- Results and Discussions
- Concluding Remarks
- References & Acknowledgements

Cold spray metal deposition

Figure 1: Operating principle of a high pressure metal powder cold spray system (S. Yin et al., 2018).

High velocities: 300 to 1200 m/s

Powder particles: 1 to 50 μm

Applications: - coating (corrosion resistance, wear resistance, composite coatings)

- repair
- additive manufacturing

Materials: Al, Cu, Ni, Ti, Cr, Co, Ag, Zn, Nb, Zr, W, Ta, Al alloys, Ni alloys, steels and stainless steels, MCrAlY, Cu-W, etc.

Improve the metal particle delivery of cold spray nozzles

Figure 2: 316L stainless steel deposit profiles obtained at different values of nozzle traverse speed (D. Kotoban et al., 2017).

Modelling of the carrier phase

- Density-based flow solver in ANSYS FLUENT[®] v19.5
- Reynolds Averaged Navier-Stokes equations (RANS) SST k- ω model
- Roe flux difference split scheme + 3rd order MUSCL interpolation

Figure 3: Greyscale levels of mean axial velocity predicted by CFD (top) and iso-colour levels of mean axial velocity from Weightman et al., 2015 (bottom).

Weightman et al. 237568 cells

3

4

5

950272 cells

2

3801088 cells

×/D Figure 4: Axial distribution of centreline velocity from PIV

(line) and CFD (symbols) for three levels of computational

mesh refinement.

1.5

0.5

0

0

U/U

Modelling of the discrete phase

- Discrete Phase Model (DPM) "two-way coupling"
- Unsteady Particle Tracking + high-Mach-number drag law
- Discrete Random Walk model

Figure 5: Comparison of titanium particle maximum axial velocity as a function

of distance from the nozzle exit (Zahiri et al., 2009).

Commercial cold spray nozzle

- The commercial conical convergent-divergent cold spray nozzle (TWI)
- D_i = 12.8 mm, D_{throat} = 2.65 mm, D_e = 7.5 mm, L_{conv} = 30 mm, L_{div} = 181 mm and $L_{pre-chamber}$ = 60 mm
- Structured multi-block body-fitted Cartesian mesh of about 1.6 million cells

Figure 6: Sketch of the computational domain and boundaries.

Figure 7: Computational mesh.

Nozzle redesign

- The internal wall was re-profiled using the Method of Characteristics implemented by T. • Alcenius and S.P. Schneider (1994) – convergent part & the CONTUR code by J. C. Sivells (1978) – divergent part
- The throat diameter and the overall length were kept the same •

Figure 8: Sketch of the nozzle profiles.

Table 1: Cold spray inlet conditions for the gas.

Boundary	Temperature	Pressure	Gas
inlet 1	1073.15 K	5e+6 Pa	N2
inlet 2	300 K	150 Pa	N2

Table 2: Properties of the simulated powder material.

Property	Description	
Material	316L stainless steel	
Particle shape	spherical	
Particle density, kg/m ³	7765.4	
Initial particle velocity, m/s	10	
Initial particle temperature, K	298.15	
Powder feed rate, g/min	150	

Figure 9: Particle size distribution for the 316L stainless steel powder used in the Eulerian-Lagrangian coupled CFD simulation.

Velocity distribution

Radial spread of particles

Figure 12: Radial spread of the 316L stainless steel particles on impact with the substrate located at 35 mm from the nozzle exit (a) Out4 nozzle and (b) Contur nozzle.

Area density of particles

Figure 13: Area density of the 316L stainless steel particles on impact with the substrate located at 35 mm from the nozzle exit (a) Out4 nozzle and (b) Contur nozzle.

Table 3: Bulk performance of the baseline and redesigned cold spray nozzles based on the ensemble of particles impacting the substrate located 35 mm downstream of the nozzle exit plane.

	TWI	Contur
$Z_1 = \overline{V_p} / \max(V_g)$	0.4603	0.4759
$Z_2 = \sigma(V_p) / \overline{V_p}$	0.0598	0.0724
$Z_3 = COV$	0.7610	0.6077
$\Phi = 0.25(1 - Z_1) + 0.25Z_2 + 0.5Z_3$	0.5304	0.4530

Z₁ - ratio of the mass-weighted particle speed evaluated just off the substrate (target) to the maximum gas velocity

- Z₂ mass-weighted standard deviation of the particle speed normalized by the mass-weighted mean particle speed
- Z_3 coefficient of variation, which is a point-to-point measure of the uniformity in the spread of the particles over the substrate face

- CFD simulations of a supersonic nitrogen jet lightly laden with 316L stainless steel particles were performed.
- The flow dynamics and the particle behavior reproduced the experimental data pattern reported in the literature.
- The CFD results indicate that tangible benefits are achievable by redesigning the cold spray nozzle by the Method of Characteristics.
- Future work aims to use computer based optimization of the nozzle inner wall to further improve the deposition performance.

References

- S. Yin, et al., "Cold spray additive manufacturing and repair: Fundamentals and applications," Additive Manufacturing, Vol. 21, p 628-650 (2018).
- J. Weightman, et al., "Effects of Nozzle Lip Thickness on the Global Modes of an Impinging Supersonic Jet," 7th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Melbourne, Australia, December 2015.
- S.H. Zahiri, et al., "Characterization of Cold Spray Titanium Supersonic Jet," J. Therm. Spray Technol., Vol. 18, No. 1, p 110-117 (2009).
- J.C. Sivells, "A computer program for the aerodynamic design of axisymmetric and planar nozzles for supersonic and hypersonic wind tunnels," ARO Inc., a Sverdrup Corporation Company, ADEC-TR-78-63 (1978).
- T. Alcenius, S.P. Schneider, "Status Report for NASA Langley Grant NAG-1-1133: Development of a Code for Wall Contour Design in the Transonic Region of Axisymmetric and Square Nozzles," NASA-CR-194857 (1994).

Acknowledgements

- IMPaCT CDT is supported by EPSRC grant EP/L016206/1
- Insightful guidance from P. McNutt, The Welding Institute (TWI), UK

